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Abstract

We present a new time-accurate algorithm for the explicit numerical integration of the compressible Euler equations of
gas dynamics. This technique is based on the discrete-event simulation (DES) methodology for nonlinear flux-conservative
PDEs [Y.A. Omelchenko, H. Karimabadi, Self-adaptive time integration of flux-conservative equations with sources,
J. Comput. Phys. 216 (1) (2006) 179–194]. DES enables adaptive distribution of CPU resources in accordance with local time
scales of the underlying numerical solution. It distinctly stands apart from multiple (local) time-stepping algorithms in that it
requires neither selecting a global synchronization time step nor pre-determining a sequence of time-integration operations for
individual parts of a heterogeneous numerical system. In this paper we extend the DES methodology in three important
directions: (i) we apply DES to a system of coupled gas dynamics equations discretized via a central-upwind scheme
[A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection–diffusion
equations, J. Comput. Phys. 160 (2000) 241–282; A. Kurganov, S. Noelle, G. Petrova, Semidiscrete central-upwind schemes
for hyperbolic conservation laws and Hamilton–Jacobi equations, SIAM J. Sci. Comput. 23 (3) (2001) 707–740]; (ii) we intro-
duce a new Preemptive Event Processing (PEP) technique, which automatically enforces synchronous execution of events
with sufficiently close update times; (iii) we significantly improve the accuracy of the previous algorithm [Y.A. Omelchenko,
H. Karimabadi, Self-adaptive time integration of flux-conservative equations with sources, J. Comput. Phys. 216 (1) (2006)
179–194] by applying locally second-order-in-time flux-conserving corrections to the solution obtained with the forward Euler
scheme. The performance of the new technique is demonstrated in a series of one-dimensional gas dynamics test problems by
comparing numerical solutions obtained in event-driven and equivalent time-stepping simulations.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Asynchronous; Explicit; Discrete-event simulation; Event-driven; Gas dynamics; Euler equations; Central-upwind scheme;
Adaptive; Multi-scale; PDE; Time-accurate integration; Multiple time-stepping
1. Introduction

In recent years computational scientists have been paying increased attention to adaptive techniques for
multi-scale heterogeneous systems. The primary reason for this interest is obvious: despite continuing
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.04.010

* Corresponding author. Tel.: +1 858 7937063; fax: +1 858 7775684.
E-mail addresses: yurio@sciberquest.com (Y.A. Omelchenko), homak@sciberquest.com (H. Karimabadi).

mailto:yurio@sciberquest.com
mailto:homak@sciberquest.com


Y.A. Omelchenko, H. Karimabadi / Journal of Computational Physics 226 (2007) 282–300 283
advances in computer architectures, high-resolution simulations in many scientific fields still remain compu-
tationally prohibitive. Examples of such multi-scale systems are global models of the Earth’s magnetosphere
[27], porous and combustion flows [12,19,24,30] and weather phenomena [28,29], to name a few. In general,
CPU efficiency of explicit multi-scale simulations is constrained by the global Courant–Friedrich–Levy (CFL)
condition. Without resorting to implicit and timestep-splitting techniques, it can only be increased via spatial
and/or temporal refinement of the numerical solution. As a result, a number of explicit multiple time-stepping
(MTS) methods have been developed for hyperbolic conservation laws [6,7,10,15,35,38]. The common strategy
is to use each cell’s maximum stable timestep rather than the value limited by the global CFL condition. The
difficulty is in ensuring that asynchronous information is correctly and efficiently propagated in a time-accu-
rate fashion. In order to address this problem, these references suggest various time integration and synchro-
nization schemes. Some of them do not enforce conservation of numerical fluxes. This degrades the accuracy
and stability of asynchronous computation, despite the fact that such schemes may be formally higher-order
accurate in time (e.g. see Ref. [35]). More importantly, all MTS techniques require careful selection of global
time steps, at which conditions for determining new local time steps need to be recomputed (unless these con-
ditions do not change in time, as in linear models [8]). As a result, between two successive global synchroni-
zations points in time, MTS methods have to rely on a pre-determined hierarchy of interleaved temporal
updates, where cells with smaller timesteps (‘‘faster’’ cells) are typically integrated before cells with larger time-
steps (‘‘slower’’ cells). This causality requirement, however, is violated in those iterations where ‘‘slower’’ cells
are advanced prior to their ‘‘faster’’ neighbors in order provide flux information at cell interfaces for further
time interpolation. For efficiency, MTS methods employ fixed values of local time-step sizes throughout a sin-
gle global synchronization step. The sizes of local timesteps and their sequence are determined based on the
minimum acceptable time-step size, which is evaluated at the beginning of each global time step. For strongly
nonlinear systems, however, these conditions may change during a single global integration step significantly
enough, so that a priori computed local timesteps may exceed current permissible time-step sizes [6]. In that
case the solution becomes numerically unstable. MTS techniques are also known to lead to ‘‘resonance’’ (non-
linear) instabilities in molecular dynamics simulations [5]. Thus, the multiple time-stepping paradigm does not
seem to allow a flexible approach to merging local time steps or offer a robust strategy for selecting local
updates that would automatically satisfy causality and accuracy constraints imposed by the underlying physics
and geometry. In addition, time-stepping techniques, in general, have difficulty adaptively deactivating non-
informative parts of the computational domain, as this can easily trigger explosive numerical instabilities [26].

In structured adaptive mesh refinement (SAMR) methods [2–4], temporal refinement is usually achieved by
choosing hierarchical time steps for finer patches in accordance with their mesh refinement ratios and CFL
conditions. Therefore, this type of time integration can also be considered as a subset of MTS. SAMR pre-
serves conservation laws by imposing flux corrections (in a time-integrated sense) at coarse-fine patch inter-
faces. Being an MTS method, the SAMR integration algorithm suffers from the same deficiencies pointed
out above. Furthermore, the original formulation of SAMR [2–4] assumes that spatial refinement should
be based on error estimation. Application of standard error estimation procedures (e.g. Richardson’s extrap-
olation) requires the knowledge of the approximation orders of the governing finite-difference equations.
However, in stochastic or multi-physics systems (e.g. reactive flows) accurate estimates may be difficult or
expensive to obtain. As a result, practical mesh refinement algorithms are often based on more physical (intu-
itive), rather than numerical (error-based) assumptions. In that case, however, hierarchical MTS updates may
produce uncontrolled solution errors due to inferior accuracy of coarse-patch calculations. On the other hand,
in multiple-timescale simulations, where the solution is fairly smooth in space, applying SAMR may result in
overrefining the computational domain. Therefore, for such applications local time integration alone (if prop-
erly implemented) would result in substantial savings in computation time. For instance, to integrate efficiently
from the subsonic, sub-Alfvenic regime through the solar corona into the super-Alfvenic solar wind [34], one is
faced with a significant computational challenge that the integration is essentially controlled by the fast time
scales characteristic of the turbulent MHD plasma in the subsonic regime. Clearly, to achieve optimum
numerical resolution and performance, mesh and temporal refinements should be considered as two separate
numerical issues. The former is required to reduce approximation errors due to solution gradients in config-
uration space, the latter being sought to maximize the use of CPU resources in accordance with local physical
time scales and chosen mesh density.
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It was pointed out earlier [21,23] that temporal refinement of PDE-based simulations does not need to be
necessarily carried out in the form of predetermined (hierarchical) updates. In fact, a heterogeneous numerical
system may proceed in simulated time by adaptively applying local time increments, which lead to desirable
solution increments satisfying the appropriate accuracy and causality requirements. This important capability
is achieved via self-adaptive Discrete-Event Simulation (DES), which abandons the concept of uniform time
progression in favor of enabling individual time lines for system micro-states [13,22,23]. In DES, the solution
variables predict and synchronize their temporal trajectories through enforcement of local causality and accu-
racy constraints, formulated in terms of changes to these variables.

Recently, a number of multiple-timescale algorithms have emerged for specific applications across various
scientific and engineering disciplines [8,18,20,21,25,32]. Some of these methods [18,21,32] are based on classical
discrete-event methodology [1,39]. In order to enable robust and accurate asynchronous integration of nonlin-
ear particle-in-cell (PIC) and PDE models, two additional principles of event-driven simulation were proposed
[13,22,23]: (i) self-adaptive event synchronization; and (ii) conservative flux transfer between mesh elements.

In this paper, when applying DES to Euler’s equations of gas dynamics, we introduce two new features: (i)
Preemptive Event Processing (PEP); (ii) second-order-in-time-accurate integration. PEP bridges the gap
between time-stepping and event-driven computations by forcing events closely spaced in time continuum
to synchronize at time levels, which are adaptively determined during the simulation. The second-order-in-
time flux correction, presented in this paper, significantly improves the accuracy of DES compared to the
first-order forward Euler scheme [23]. It should be also noted that this work extends the DES machinery to
high-resolution schemes for coupled hyperbolic conservation laws, following the asynchronous treatment of
diffusion and reactive terms [23].

In Section 2 we summarize the most essential features of DES and compare them to those of MTS methods.
A discrete gas dynamics model is introduced in Section 3. In Section 4 we present a new time-integration tech-
nique (DES–PEP). Section 5 provides descriptions of discrete-event and time-stepping algorithms used to per-
form gas dynamics simulations. Section 6 compares event-driven and time-stepping solutions to several one-
dimensional test problems. Section 7 presents results from a temporal convergence study conducted for one of
the test problems considered. Concluding remarks and general directions for future work are given in Section
8. Additional details concerning the new DES algorithm are provided in the Appendix.

2. Discrete-event simulation

DES has its origin in operations research and management science, war games and telecommunications
[1,11,39]. An event-driven simulation progresses in time by allowing the global system to ‘‘jump’’ from one
global state to another at irregular (asynchronous) moments upon the occurrence of ‘‘events’’, which represent
effective units of information in the system. This automatically eliminates two well-known causes of CPU inef-
ficiency (‘‘degeneracy’’) in simulations with spatially inhomogeneous time scales: (i) ‘‘idle’’ performance due to
the waste of CPU time on updating inactive (noninformative) parts of the system state; (ii) ‘‘stiff’’ performance
caused by the presence of relatively small parts of the system undergoing faster changes compared to the rest
of the system.

In DES, each event is a simulation object characterized by its process function, which is responsible for
changing the system state and a timestamp, indicative of when the process function is scheduled to be executed
in simulated time. DES programs typically operate with the following data structures: (1) The state variables.
These variables describe the solution of the system. (2) The event list (queue). This priority queue contains
events, which are sorted by their timestamps in non-decreasing order so that the timestamp of the top event
corresponds to the earliest execution time in the system. (3) The simulation clock. This data structure corre-
sponds to the main loop of a traditional time-stepping simulation. The clock indicates how far in time the sim-
ulation has progressed. The DES cycle proceeds by repeatedly removing the top event from the event list and
executing (processing) it by calling its process function. In DES terminology, a discrete ‘‘micro-state’’ (simply
referred to as a ‘‘state’’) corresponds to an independent computational variable. Each state schedules its
update by delaying the execution of a corresponding event until its due time. The main advantage of event-
driven time integration may be explained as follows. Suppose we integrate a computational quantity, f by
solving an ordinary differential equation:
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df =dt ¼ Rðf Þ: ð1Þ

In DES, the traditional numerical measure of time advance (time-step size), Dt, is replaced by a physically
meaningful information unit, Df , whose choice is usually dictated by considerations of local accuracy and sta-
bility [21–23]. For a given Df , an individual time increment Dt for every state is found by solving the inverse of
Eq. (1):
dt=df ¼ 1=Rðf Þ: ð2Þ

As a result, heterogeneous parts of the solution may ’’warp’’ through simulated time to the extent that time
increments for inactive states (Rðf Þ ¼ 0) may effectively become infinite.

The robust application of discrete-event methodology to nonlinear flux-conservative equations was made
possible with the advent of self-adaptive integration [22,23]. Here DES is effectively equivalent to applying
a self-adaptive ‘‘predictor–corrector’’ scheme to each computational element (state). The ‘‘predictor’’ sched-
ules an event with a time delay, Dte, during which the value of a corresponding state is estimated to change
by a local target amount, Dfe. The scheduled state is assumed to ‘‘ballistically’’ evolve for the duration of time,
Dte along a predicted time trajectory, specified by the chosen discretization scheme and current system param-
eters. Accordingly, the ‘‘corrector’’ ensures that a pending event is processed earlier than its scheduled process
time (preempted), should the causality constraints used to predict its ballistic trajectory undergo a significant
change (e.g. the predicted change has already been achieved via synchronization updates [23]). This is accom-
plished by requiring that each state always synchronize itself with its dependent (‘‘neighboring’’) states when
an event associated with that state is either processed directly (at the top of the event queue), or preempted
during a synchronization call. As a result, the DES code automatically determines appropriate spatial syn-
chronization ranges for local updates. This ability of self-adaptive DES to predict and correct local computa-
tions constitutes its fundamental difference compared to other asynchronous (time-stepping and discrete-
event) techniques.

In our previous paper on the self-adaptive integration of flux-conservative equations with reactive terms
[23] we described an algorithm, which synchronizes update events via causality constraints only. In principle,
it does not prevent events with arbitrarily close execution times from being processed progressively at slightly
different times. Naturally, this may result in unnecessary flux evaluations and synchronization operations. A
similar efficiency problem arises in MTS (and SAMR) techniques, where it is commonly addressed by round-
ing all timesteps down to the next lower fractional power of two (e.g. see Refs. [10,20]). In this paper, we show
that efficient synchronization of events with close time stamps can be achieved adaptively via a new (PEP) tech-
nique (Section 4).

The DES algorithm described in Refs. [22,23] is based on the forward Euler scheme, which is formally first-
order accurate in time. It assumes that numerical fluxes at cell interfaces remain piecewise-constant between
two successive synchronization acts. This is by no means a general restriction for DES. Indeed, one may use
local time integrators, which could be formally second-order (or higher) accurate in time and would still pre-
serve numerical fluxes in a time-averaged sense. This can be achieved by representing flux trajectories as linear
functions (or piecewise-polynomials) in time and solving Eq. (2) for local Dt’s (with given Df ’s). In this paper,
however, we describe a simpler DES algorithm, where fluxes are evaluated a posteriori using the second-order
Euler correction (Section 3). It should also be noted that for certain numerical systems, such as flux-conser-
vative equations discretized in space via the Cauchy–Kowalevski procedure, it is possible to derive matching
higher-order-in-time asynchronous integrators even with the forward Euler scheme [8]. Below we summarize
the most essential properties of DES–PEP by grouping them in three important categories:

2.1. Robustness (self-adaptivity)

1. No need for global synchronization time steps.
2. Stability (correct propagation of information) is always maintained: at any point in simulated time compu-

tational elements are continuously updated in a physically driven, self-adaptive order by means of event
sorting and synchronization operations.
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3. Individual time increments are selected based on local physical thresholds, estimated through stability and
accuracy considerations.

2.2. Efficiency

1. Local time increments need not bear any integer multiple relations with each other (e.g. fractional powers
of two or integer multiples), as events with close execution times are adaptively synchronized via PEP.

2. No need to explicitly group elements with similar rates of change in blocks. The DES algorithm also
ensures that fluxes are computed once per face.

3. Computational elements are adaptively deactivated (become CPU-idle) and reactivated without causing
numerical instability.

2.3. Accuracy

1. DES is flux-conservative: common interfaces are always updated with the same fluxes.
2. Physical thresholds for changes to variables per update are automatically observed. This property is espe-

cially important for reactive systems.
3. Locally higher-order time integration is possible.

3. Numerical model for Euler’s equations

Our discrete model is based on one-dimensional Euler’s equations for compressible inviscid gas dynamics
written in conservation form:
oU

ot
þ ofðUÞ

ox
¼ 0; ð3Þ

U ¼
q

M

E

; f ¼
M

qm2 þ p

ðE þ pÞm
; E ¼ p

ðc� 1Þ þ
qv2

2
: ð4Þ
Here, U and f represent the solution and flux vectors; q, v, M ¼ qv, p, E are the density, velocity, momentum,
pressure and total energy of gas, respectively and c is the gas adiabatic index.

This model is discretized on a uniform mesh, i ¼ �1; . . . ;N cell using the following notation: xi ¼ iDx (cell
centers) and xi�1=2 ¼ ði� 1=2ÞDx (cell faces). Here Dx is the cell size and indices i = �1, i ¼ N cell correspond
to the left and right boundary cells, respectively. As in previous work [23], cell-centered discrete solution states
uiðtiÞ :¼ Uðxi; tiÞ are defined at times ti, corresponding to the most recent updates of these states. Eqs. (3)–(4)
are discretized with a second-order semi-discrete central-upwind scheme, with finite differences being expressed
in a scalar (component-wise) form [16,17]:
~ui � uiðti þ DtiÞ ¼ ui þ RiDti; ð5Þ

Ri ¼ �
1

Dx
½F iþ1=2 � F i�1=2�; ð6Þ

F i�1=2 ¼
aþi�1=2f ðuR

i�1Þ � a�i�1=2f ðuL
i Þ

aþi�1=2 � a�i�1=2

þ
aþi�1=2a�i�1=2

aþi�1=2 � a�i�1=2

½uL
i � uR

i�1�; ð7Þ

aþi�1=2 ¼ max½kmaxðuR
i�1Þ; kmaxðuL

i Þ;þe�; a�i�1=2 ¼ min½kminðuR
i�1Þ; kminðuL

i Þ;�e�; ð8Þ
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where e is a small numerical constant of the order of machine precision (roundoff); kmaxðuÞ ¼ vþ c,
kminðuÞ ¼ v� c are the maximum and minimum eigenvalues of the Jacobian of=oUðc ¼

ffiffiffiffiffiffiffiffiffiffi
cp=q

p
is the speed

of sound) and uL
i ; uR

i are the left and right solution values obtained by performing a TVD-limited linear
reconstruction:
uR
i ð� uiþ1=2

i Þ ¼ ui þ
1

2
Di; uL

i � ðu
i�1=2
i Þ ¼ ui �

1

2
Di: ð9Þ
In this paper we use the following approximation for the slopes Di [40]:
Di ¼
max½Di�1=2Diþ1=2; 0�

Di
; Di�1=2 ¼ ui � ui�1; Diþ1=2 ¼ uiþ1 � ui; Di ¼

1

2
ðuiþ1 � ui�1Þ: ð10Þ
Interestingly enough, flux approximation (7) coincides with the well-known HLLE formulation [9]. It becomes
purely upwind in the case of super sonic flow:
v� c > 0 : a�i�1=2 ¼ �e; aþi�1=2 ¼ jvj þ c; F i�1=2 ¼ f ðuR
i�1Þ; ð11aÞ

vþ c < 0 : aþi�1=2 ¼ þe; a�i�1=2 ¼ �jvj � c; F i�1=2 ¼ f ðuL
i Þ: ð11bÞ
Eqs. (5)–(10) are stable under the following local CFL condition [9]:
Dti < DtCFL
i ¼ Dx

2 maxðja�i�1=2j; jaþi�1=2j; ja�iþ1=2j; jaþiþ1=2jÞ
: ð12Þ
The time integration in a synchronous time-driven simulation (TDS) is constrained by the global minimum
CFL timestep, DtCFL

min computed in the interior of the computational domain, i ¼ 0; . . . ;N cell � 1. On the other
hand, a corresponding event-driven simulation may proceed asynchronously by choosing proper local time
increments Dti.

The solution ~u, integrated using Eq. (5), is first-order accurate in time. However, a formally second-order-
in-time solution ~~u can easily be constructed without violating flux conservation by performing a local Euler
correction:
~~uiðtclockÞ ¼ ~uiðtclockÞ þ Dui; Dui ¼ Dui�1=2 � Duiþ1=2; ð13Þ

Duiþ1=2 ¼
1

2Dx
½F iþ1=2ð~uiÞ � F iþ1=2ðuiÞ�Dtiþ1=2; Dtiþ1=2 ¼ tclock � tsync

iþ=12; ð14Þ
where tsync
iþ1=2 is the time at which states ui and uiþ1 were last synchronized (i.e., the time at which flux F iþ1=2 was

last evaluated). Eqs. (13)–(14) are also applicable to TDS. However, in this case, the second-order correction is
applied globally by explicitly recomputing all rate-of-changes, Rið~uiÞ:
~~uiðtclockÞ ¼ uiðtÞ þ R
_

iDt; R
_

i ¼ ðRiðuiÞ þ Rið~uiÞÞ=2: ð15Þ
4. Preemptive event processing (PEP)

Traditional (‘‘single-event mode’’) DES algorithms generally assume that the global simulation clock is
advanced upon processing and rescheduling each event in the event queue. As mentioned above, this type
of event-driven computation may result in unnecessary inter-element synchronizations and flux evaluations
in parts of the computational domain, where the solution properties are fairly homogeneous. This would incur
additional CPU overhead compared to synchronous computation (carried out on a subdomain basis). More-
over, efficient parallelization of single-event DES models may easily become a challenging problem since opti-
mistic and conservative strategies for traditional parallel discrete-event simulations [1,11,14,33] may become
difficult to optimize for strongly nonlinear systems. Thus, processing and scheduling single events without tak-
ing into account their temporal proximity to other (pending) events, may lead to inefficiencies in both serial
and parallel DES. To circumvent this problem, we have developed an alternative, ‘‘batch’’ mode for DES–Pre-
emptive Event Processing (PEP). In this mode, events with sufficiently close timestamps are projected onto
synchronous time levels, which are determined adaptively by the program. This generally improves the



Fig. 1. Illustration of preemptive event processing (PEP). In each PEP loop, events with timestamps, te 6 tPEP þ DtPEP (red) are
synchronously executed at the time level t ¼ tPEP, corresponding to the earliest timestamp (here ti). The PEP ‘‘time window’’ size DtPEP

is dynamically adjusted as events are processed in timestamp order. Events with timestamps falling outside the PEP window (blue)
remain CPU-idle. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this
article.)
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efficiency of event processing and makes it possible to parallelize DES programs via conventional message
passing. In principle, different DES models may implement PEP in different ways, as conditions for event pre-
emption may vary by model. Here we describe an algorithm, which we have found to be simple, flexible and
efficient. The proximity of events in simulated time can be characterized by a finite time window extending into
the future from the global lower bound on timestamp (LBTS), which always corresponds to an event with the
earliest process time. Events with timestamps, tproc

e lying within the bounds of this window are executed at the
current simulation time, tclock coinciding with the LBTS (Fig. 1).

Importantly, at each time level tclock the size of this window, DtPEP can be adaptively adjusted (indepen-
dently on each processor when run in parallel) by minimizing a number of preempted states, whose next pro-
cess times are predicted to fall within the current time window. In each PEP loop events are processed at
t ¼ tclock in their timestamp order as follows. Let us initialize DtPEP ¼ 1. Then an event, e with a characteristic
time increment, Dte (see below) is preempted only if its timestamp tproc

e satisfies the following (PEP) condition:
tproc
e 6 tclock þ DtPEP; DtPEP ¼ min DtPEP;RPEPDteð Þ; ð16Þ
where RPEP is a positive PEP parameter (usually RPEP 6 1). Note that condition (16) implies that during the
PEP loop DtPEP is dynamically reevaluated, with the synchronous event processing stopping automatically
when this condition is violated. Despite its apparent simplicity, this algorithm allows a number of different
strategies, depending on a particular choice of Dte in Eq. (16). For instance, for event e one may select Dte

to be equal to its predicted (target) time increment, Dttr
e � tproc

e � tclock, where tproc
e is the event process time,

estimated when the event is scheduled for execution. However, we experimentally discovered that in most cases
DES–PEP models run faster if Dte is set to the actual time period, Dtproc

e � tclock � tlast
e , passed between the cur-

rent simulation time tclock and the event’s last processing time, tlast
e . An in-depth description of the DES–PEP

algorithm for gas dynamics Eqs. (3)–(4) is given in the following section.

5. Algorithm implementation

The pseudocode of our gas-dynamics DES model is shown in Table 1, with more pseudocode (for individ-
ual functions) given in Tables A1–A4 found in the Appendix. Note that the pseudocode is written in an object-
oriented programming (OOP) style, which emphasizes the object-oriented nature of discrete-event models
[1,39]. In particular, the OOP notation (e.g. object.ObjectType::method( )) seems to be more appropriate for
describing event-related operations than the usual functional notation (e.g. method(ObjectType object)).
Throughout the pseudocode we use the ‘‘//’’ symbol to provide additional comments at the ends of selected
lines.
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5.1. Data structures and state handling

The solution variables (states) are stored in a global data container, DESFab. States ui ðuðiÞÞ are linked
with their corresponding event objects, ei ðeðiÞÞ. States, which are updated in a single PEP loop, are grouped
in a linked list structure, PEPStack, reinitialized empty before entering each PEP loop. All states are log-
ically marked as being ‘‘valid’’ or ‘‘invalid’’, based on their current status. A state is ‘‘invalidated’’ when its
associated event is processed (see Event::process( ) in Table A2) or preempted (see Event::synchronize( ) in
Table A2). An ‘‘invalid’’ state needs to be rescheduled upon the completion of a PEP loop, in which it
was invalidated. The scheduling procedure (Event::schedule( ) in Table A4) may add a new event to the
event queue, EventQueue. This automatically ‘‘validates’’ and ‘‘activates’’ its associated state. Alternatively,
the scheduling procedure may ‘‘deactivate’’ an invalidated state if its next execution time is deemed to be
‘‘infinite’’ for the purpose of this simulation (see details in Event::schedule( ) in Table A4). Note that sec-
ond-order flux corrections (line 8 in Table 1) are allowed only at cell interfaces, which separate ‘‘active’’
states (see Event::correct( ) in Table A3). Accordingly, for programming convenience, boundary states
and states being synchronized are always assigned the ‘‘active’’ status (see Event::synchronize( ) in Table
A2). A logical variable, Finished is introduced in order to force all ‘‘active’’ events to synchronize at the
simulation end time, tEND. An input parameter, TimeOrder (equal to 1 or 2) corresponds to the temporal
approximation order adopted in a given run.
Table 1
Pseudocode of the gas-dynamics DES algorithm

function run_des( )
1: initialize u; Finished = false

2: for ui in DESFab:
3: dui ¼ 0; tclock ¼ ti ¼ tlast

i ¼ tsync
iþ1=2 ¼ 0; invalidate and deactivate ui

4: add ei to PEPStack

5: endfor

6: for e in PEPStack: e.reconstruct( )
7: if (TimeOrder > 1):
8: for e in PEPStack: e.correct( )
9: for e in PEPStack: e.reconstruct( )

10: endif

11: if (Finished is true): return // after correcting solution
12: for e in PEPStack:
13: e.dfdt( ) == compute rate-of-change and update local state time te

14: if (e is not valid): e.schedule( ) // compute tproc
e , Dte and schedule new event

15: endfor

16: if (EventQueue is empty): // set clock time to end time
17: tclock ¼ tEND

18: else == set clock time to earliest timestamp
19: tclock ¼ min tproc

e ; tEND

� �

20: endif

21: if (tclock ¼¼ tENDÞ: Finished= true

22: clear PEPStack ; DtPEP ¼ 1
23: while (EventQueue is not empty): // do PEP-loop
24: e= EventQueue.top( ) // get earliest valid event
25: DtPEP ¼ minðDtPEP;RPEPDteÞ
26: if (tproc

e > tclock þ DtPEP and Finished is false): break // out of PEP loop
27: e.process( ) // execute event e

28: EventQueue.pop( ) // discard event e

29: remove invalidated events from EventQueue

30: endwhile

31: goto line 6 // continue DES
endfunction

The simulation starts at t = 0 and finishes at t ¼ tEND. Parts of the numerical solution u are self-adaptively updated via PEP at time levels,
t ¼ tclock. Event-related operations (event methods) are described in the Appendix.
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It should be emphasized that at each PEP time level tclock, the contents of PEPStack represent an instan-
taneous snapshot of the actively changing simulation phase space, dynamically assembled by processing and
synchronizing solution states during the PEP loop (see Event::process( ) and Event::synchronize( ) in Table A2).
Note that the global simulation time tclock still progresses at the fastest rate of change present in the system.
However, the computational efficiency of DES comes from the fact that at any time the phase space volume
stored in PEPStack constitutes only a fraction of the whole simulation phase space stored in the DESFab

container.

5.2. DES–PEP integration cycle

The DES–PEP algorithm is outlined in Table 1 (for more details, we suggest reading Ref. [23]). At t = 0 all
simulation variables ui are properly initialized (line 1). All states are also marked as ‘‘inactive’’ and ‘‘invalid’’,
and their corresponding event objects are added to PEPStack (lines 2–5). The DES cycle begins on line 6,
where the left and right interface solutions (Eq. (9)) are reconstructed for each PEPStack state (Event::recon-

struct( ) in Table A1). If one selects TimeOrder > 1, then the PEPStack states are corrected (Event::correct( ) in
Table A3) and reconstructed again. Numerical fluxes are corrected (Event::correct( ) in Table A3) and recom-
puted (Event::dfdt( ) in Table A1) at the cell interfaces synchronized during the preceding PEP loop (note that
at t = 0 all interfaces are considered to be synchronized, and Event::correct( ) does nothing since all states are
initialized as ‘‘inactive’’). The simulation ends when Finished is found to be true (line 11). Otherwise (lines 12–
15), the rate-of-changes of all PEPStack states are updated (Event::dfdt( ) in Table A2) and ‘‘invalid’’ states
are rescheduled for execution (Event::schedule( ) in Table A4). Lines 16–20 determine the next global clock
time, which is set to either the earliest event timestamp (if there are ‘‘valid’’ events in EventQueue), or the sim-
ulation end time tEND, whichever is earlier. The variable Finished is set to true if the simulation end time is
reached (line 21). PEPStack is emptied on line 22. On lines 23–30 the DES code executes PEP (Section 4)
by processing and popping top events from EventQueue (lines 24, 27–28). Processing event ei results in updat-
ing its state ui, incrementing the ‘‘flux capacitor’’ variable dui and synchronizing ui with its neighboring states
(see Event::process( ) and Event::synchronize( ) in Table A2). In turn, neighboring states preempt their pending
events if the values of their ‘‘flux capacitors’’ exceed their target thresholds, Dutg

i [23], or if they are located next
to physical boundaries. Events ei, popped from EventQueue, are executed at t ¼ tclock as long as their time-
stamps, tproc

i fall within the bounds of the PEP window (see Eq. (16)). In our tests we found that the simulation
Table 2
Pseudocode of the gas-dynamics TDS algorithm

Function run_tds( )
1: tclock ¼ 0 ; initialize u

2: while (tclock 6 tENDÞ:
3: if (TimeOrder > 1): usave ¼ u
4: for Pass = 1, TimeOrder:
5: for "i: uðiÞ.reconstruct( )
6: for "i: compute fluxes, F i�1=2 // see Eq. (7)
7: if (Pass == 1): Dt ¼ xCFLDtCFL

min

8: for "i :
9: compute Ri // see Eq. (6)
10: if (TimeOrder > 1 and Pass == 1): Rsave

i ¼ Ri

11: endfor

12: if (Pass == 2): for "i : {Ri ¼ ðRi þ Rsave
i Þ=2; ui ¼ usave

i } // see Eq. (15)
13: for "i: ui ¼ ui þ RiDt
14: apply boundary conditions for u

15: endfor

16: tclock ¼ tclock þ Dt
17: endwhile

endfunction

The simulation starts at t = 0 and finishes at t ¼ tEND. The whole numerical solution u is synchronously updated at adaptively selected
time levels, t ¼ tclock.
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accuracy may be somewhat increased if, in addition to condition (16), events ei are also preempted when the
virtual advance of their states’ ‘‘flux capacitors’’ (dui) to the current time tclock results in their ‘‘overflow’’:
Table
Summ

Run

Advec
WC (t
WC (t
Sod
Blowo

Doubl
kdui þ Riðtclock � tiÞkP Dutg
i : ð17Þ
Finally (line 29), we discard event objects, corresponding to ‘‘invalid’’ states having been preempted during
synchronization calls. Normally, such events constitute a small fraction of the total number of events pro-
cessed. We find this procedure to be more CPU-efficient, compared to immediate removal of preempted
events. Once the PEP loop finishes (either on line 23 or 26), the DES simulation continues (line 31) by pro-
ceeding to line 6. For comparison, Table 2 shows the pseudocode of the TDS algorithm, where the global
timestep Dt is adaptively selected at each time level based on the minimum CFL-limited timestep, DtCFL

min .

6. Test problems and results

For simplicity, we validate the DES–PEP technique in a series of one-dimensional test problems. Most of
them are well documented in the literature (e.g. see Refs. [16,17]). The computational speedup due to DES is
approximately proportional to the degree of numerical stiffness and inversely proportional to the relative num-
ber of active micro-states in a given system. As a result, the actual CPU time gain is highly application depen-
dent. Therefore, while still emphasizing the CPU efficiency of DES integration, in this paper we primarily
focus on verifying the computational accuracy and robustness of the new algorithm.

In all tests DES solutions are matched against those obtained in corresponding time-driven simulations
(TDS) assuming the second order of temporal approximation (TimeOrder=2). To evaluate the relative perfor-
mance of a given DES run with respect to an equivalent TDS run, we introduce two metrics: (i) the ‘‘theoret-
ical’’ speed-up, QE ¼ ðN TDS=N DESÞðN cell=N eÞ, where NTDS and NDES are the numbers of synchronous TDS and
DES (PEP) time levels, respectively and Ne is the average number of processed events (invalidated states) per
PEP loop in the DES run; (ii) the CPU speed-up, QCPU ¼ tTDS=tDES, where tTDS and tDES are the actual CPU
times measured in these TDS and DES runs, respectively. These metrics are summarized in Table 3 for all test
problems. Note that in general QCPU 6¼ QE because other contributing factors, notably the event synchroniza-
tion and priority queue overheads, influence the actual CPU performance of each simulation. Not surpris-
ingly, since our DES and TDS models employ similar rules for selecting time increments, the numbers of
PEP levels observed in DES runs with RPEP ¼ 1 coincide with the numbers of time levels obtained in corre-
sponding TDS runs (Table 3).

In our numerical experiments we approximate gas dynamics Eqs. (3)–(4) on a computational domain,
x 2 ½0; 1�, choose c ¼ 1:4 (air), use double precision and set the global (TDS) and local (DES) CFL numbers,
xCFL ¼ Dt=DtCFL to the same value, xCFL ¼ 0:5. If not stated otherwise, boundary conditions at both physical
boundaries are assumed to be Neumann. For convenience, when initializing the solution, we use an alternative
definition of the state vector: U � ðq; v; p=qÞ. To facilitate comparison between time-stepped and even-driven
simulations, we introduce the normalized theoretical and observed computational update rates,
fCFLðxiÞ ¼ Dt0=DtCFL

i and fCPUðxiÞ ¼ Dt0=Dti, respectively, where Dt0 ¼ min DtCFL
i ðt ¼ 0Þ. Since event preemp-

tion is controlled with a number of conditional statements involving floating-point variables, instantaneous
profiles of fCPUðxiÞ may contain insignificant spurious features, sensitive to input parameters of particular
DES runs (including the underlying machine precision). In DES runs, selecting smaller values of RPEP typi-
cally results in a closer match between fCPU and fCFL. However, it also leads to a larger number of PEP
3
ary of performance metrics obtained in the TDS and DES tests

Ncell NTDS Ne Ne NDES NDES QE QE QCPU QCPU

tion 2000 2000 122 122 2000 2000 16 16 22 22
¼ 0:01) 800 1661 63 194 4739 1661 4.4 4.1 2.3 2.3
¼ 0:038) 800 5043 137 430 14764 5043 2.0 1.9 1.1 1.0

800 1154 70 204 3254 1154 4.0 3.9 2.2 2.2
ff 2000 2691 172 588 7939 2691 3.9 3.4 4.0 4.0

e-columned DES entries combine results obtained for RPEP ¼ 0:4 (left column) and RPEP ¼ 1:0 (right column).
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synchronization levels. Therefore, some experimentation may be needed to guarantee the maximum perfor-
mance of DES–PEP programs (especially on parallel computer architectures).

6.1. Advection test

The first test represents a simple advection problem, with Dx ¼ 5� 10�4ðN cell ¼ 2000Þ. The initial solution
is represented by a ‘‘step-wave’’ in the computational domain, x 2 ½0; 1�:
Fig. 2.
update
legend
Uðx; t ¼ 0Þ ¼ huL½0; 0:4�; uM½0:4; 0:6�; uR½0:6; 1�i; ð18aÞ
uL ¼ ð0:05; 0:5; 0ÞT; uM ¼ ð1; 0:5; 0ÞT; uR ¼ ð0:05; 0:5; 0ÞT: ð18bÞ
Despite the obvious simplicity of this test, it clearly demonstrates an important DES feature, namely adaptive
allocation of CPU resources to the ‘‘active’’ parts of the computational domain [21]. This property alone may
boost CPU performance in a number of simulation fields, including fire propagation [19] and levelset dynam-
ics [26]. Indeed, as shown in Fig. 2, at any time during the simulation the DES solution is only updated in the
close vicinity of the front and back of the moving pulse. The rest of the computational domain is automatically
‘‘deactivated’’ without causing instability. Naturally, this leads to a significant CPU speedup, QCPU ¼ 22.

6.2. Woodward–Colella test

This test simulates the interaction of two blast waves [37]. We apply solid wall boundary conditions at both
ends of the computational domain and choose Dx ¼ 1:25� 10�3 (N cell ¼ 800).

The initial solution is represented by a superposition of three state vectors:
Uðx; t ¼ 0Þ ¼ huL½0; 0:1�; uM½0:1; 0:9�; uR½0:9; 1�i; ð19aÞ
uL ¼ ð1; 0; 1000ÞT; uM ¼ ð1; 0; 0ÞT; uR ¼ ð1; 0; 100ÞT: ð19bÞ
The DES and TDS solutions are plotted in Fig. 3 for two different simulation times. Clearly, they are of compa-
rable numerical accuracy. However, compared to TDS, DES achieves faster or similar CPU times (see Table 3).

6.3. Sod test

This classic ‘‘shock tube’’ problem was proposed by Sod [31]. It is a Riemann problem, which tests a gas
dynamics code’s ability to capture shocks and contact discontinuities, as well as produce the correct density
Advection test: tEND ¼ 0:2; RPEP ¼ 1. Shown are three solutions: uðt ¼ 0Þ (blue), uDESðtENDÞ (red) and uTDSðtENDÞ (green). DES
s are localized in the vicinity of the front and back of the moving pulse. (For interpretation of the references in colour in this figure
, the reader is referred to the web version of this article.)



Y.A. Omelchenko, H. Karimabadi / Journal of Computational Physics 226 (2007) 282–300 293
profile of a rarefaction wave. In this test we assume Dx ¼ 1:25� 10�3 (N cell ¼ 800). The initial solution is rep-
resented by two state vectors:
Fig. 3
uDESðtE

compu
article.
Uðx; t ¼ 0Þ ¼ huL½0; 0:5�; uR½0:5; 1�i; ð20aÞ
uL ¼ ð1; 0; 1ÞT; uR ¼ ð0:125; 0; 0:8ÞT: ð20bÞ
Again, the event-driven and time-stepping solutions are found to match perfectly (Fig. 4), with DES running
faster than TDS (in this case mainly due to the presence of inactive regions).

6.4. ‘‘Blowoff’’ test

Our final test simulates the propagation of two step-like gas perturbations, which are initialized moving
away (with finite initial velocities) from their common interface. Assuming Dx ¼ 5� 10�4 (N cell ¼ 2000), the
solution profile has the following form:
Uðx; t ¼ 0Þ ¼ huL½0; 0:35�; uLM½0:35; 0:5�; uRM½0:5; 0:55�; uR½0:55; 1�i; ð21aÞ
uL ¼ ð0:05; 0; 0ÞT; uLM ¼ ð0:5;�0:5; 0:2ÞT; uRM ¼ ð1; 0:5; 0:4ÞT; uR ¼ ð0:05; 0; 0ÞT: ð21bÞ
As in the previous tests, there is an excellent agreement between the DES and TDS solutions (Fig. 5). Notably,
the DES run outperforms the TDS run by a significant factor, QCPU ¼ 4. As shown in Fig. 5, choosing
RPEP ¼ 1 leads to piecewise constant CPU rates in the active parts of the computational domain. This illus-
trates the ability of DES–PEP to automatically synchronize updates characterized by quasi-uniform time
scales.
. Woodward–Colella test: tEND ¼ 0:01 (left) and tEND ¼ 0:038 (right), RPEP ¼ 0:4. Shown are three solutions: uðt ¼ 0Þ (blue),

NDÞ (red) and uTDSðtENDÞ (green). DES chooses update rates in accordance with local CFL conditions in the active regions of the
tational domain. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this
)



Fig. 4. Sod test: tEND ¼ 0:01644, RPEP ¼ 0:4. Shown are three solutions: uðt ¼ 0Þ (blue), uDESðtENDÞ (red) and uTDSðtENDÞ (green). DES
chooses update rates in accordance with local CFL conditions in the active regions of the computational domain. (For interpretation of
the references in colour in this figure legend, the reader is referred to the web version of this article.)
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7. Convergence study

In order to examine the temporal convergence of the proposed technique (i.e., the sensitivity of simulation
errors to the magnitudes of local time increments), we conducted an additional series of runs for the ‘‘blowoff’’
case. In these runs we used the same grid spacing (given in Section 6.4), but varied the CFL number xCFL and
the temporal approximation order TimeOrder (pT). An ‘‘exact’’ (reference) solution, fref was obtained in the
TDS run with xCFL ¼ 0:05 and TimeOrder = 2. Relative numerical errors, gL (L ¼ 1; 2) were computed
for the density q (with other quantities behaving similarly) with respect to this reference solution using the
maximum (kf k1) and quadratic (kf k2) norms (Tables 4 and 5):
gL ¼ kf � frefkL=kfrefkL: ð22Þ

The numerical rate of convergence, pN was computed by assuming gL � DtpN and employing two solutions ob-
tained with two different (successive) values, xCFL;1 and xCFL;2 :
pN ¼ lnðgL;2=gL;1Þ= lnðxCFL;2=xCFL;1Þ: ð23Þ
All DES runs were performed for two values of the PEP parameter, RPEP ¼ 0:5 and RPEP ¼ 1. As RPEP

decreases, spatial profiles of the CPU rate fCPU begin to better reflect the local nature of DES integration
(Fig. 6).

The results of our convergence study (summarized in Tables 4 and 5) illustrate the ability of DES–PEP to
produce accurate results for different values of RPEP. Numerical rates, pN, with which DES solutions converge,
are found to be consistent with expected formal orders of temporal approximation, pT. The accuracy of sec-
ond-order DES calculations exceeds that observed in corresponding first-order DES runs by one-two orders of
magnitude. Note that the magnitudes of errors observed both in the TDS and TDS runs are only meaningful
in the context of studies conducted with the same slope limiter (in our case given by Eq. (10)). Use of different
slope limiters may result in differences between solutions of order or greater than the magnitudes of errors



Fig. 5. ‘‘Blowoff’’ test: tEND ¼ 0:18, RPEP ¼ 1. Shown are three solutions: uðt ¼ 0Þ (blue), uDESðtENDÞ (red) and uTDSðtENDÞ (green). The
DES–PEP algorithm updates the numerical solution with piecewise constant update rates in the active regions of the computational
domain. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)

Y.A. Omelchenko, H. Karimabadi / Journal of Computational Physics 226 (2007) 282–300 295
given in Tables 4 and 5. A negative effect of slope limiters on convergence rate was also noted in formally sec-
ond-order MTS methods [7].

The demonstration of comparable accuracy achieved in DES–PEP runs with different values of RPEP (Table
4) has important implications for boosting the scalability of future parallel DES–PEP implementations.
Indeed, as seen in Fig. 6, increasing the value of RPEP leads to more uniform spatial distributions of CPU
resources (flatter profiles of fCPU). Even though it also results in generating more computations per each
PEP loop, corresponding PEP synchronization rates proportionally decrease (Table 3). This particular flexi-
bility of DES–PEP should help automate fine-tuning of future DES–PEP applications to their optimum per-
formance on massively parallel computer architectures.
Table 4
Summary of relative errors, gL and convergence rates, pN for ‘‘blowoff’’ DES runs (N cell ¼ 2000) conducted with different values of the
CFL number xCFL and the formal temporal approximation order pT (TimeOrder)

pT=xCFL g1ðpNÞ g2ðpNÞ g1ðpNÞ g2ðpNÞ
1/0.8 1.11E�01 (–) 2.68E�02 (–) 1.05E�01 (–) 2.21E�02 (–)
1/0.4 5.68E�02 (0.97) 1.00E�02 (1.42) 6.08E�02 (0.79) 9.79E�03 (1.17)
1/0.2 2.88E�02 (0.98) 4.22E�03 (1.24) 3.28E�02 (0.89) 4.03E�03 (1.28)
1/0.1 1.42E�02 (1.02) 2.02E�03 (1.06) 1.84E�02 (0.83) 1.93E�03 (1.06)
2/0.8 1.52E�02 (–) 9.41E�04 (–) 1.10E�02 (–) 7.43E�04 (–)
2/0.4 2.55E�03 (2.58) 1.68E�04 (2.49) 2.68E�03 (2.04) 1.79E�04 (2.05)
2/0.2 6.27E�04 (2.02) 4.12E�05 (2.03) 6.20E�04 (2.11) 4.36E�05 (2.04)
2/0.1 1.10E�04 (2.51) 1.04E�05 (1.99) 1.24E�04 (2.32) 1.20E�05 (1.86)

The error analysis was performed for two values of the PEP parameter RPEP : RPEP ¼ 0:5 (the leftmost two error data columns) and
RPEP ¼ 1:0 (the rightmost two columns).



Table 5
Summary of relative errors, gL and convergence rates, pN for ‘‘blowoff’’ TDS runs (N cell ¼ 2000Þ conducted with different values of the
CFL number xCFL and the formal temporal approximation order pT (TimeOrder)

pT=xCFL g1ðpNÞ g2ðpNÞ
1/0.8 1.07E�01 (–) 2.10E�02 (–)
1/0.4 6.06E�02 (0.82) 8.48E�03 (1.19)
1/0.2 3.27E�02 (0.89) 3.71E�03 (1.03)
1/0.1 1.84E�02 (0.83) 1.82E�03 (1.18)
2/0.8 1.05E�02 (–) 6.84E�04 (–)
2/0.4 2.62E�03 (2.00) 1.63E�04 (2.07)
2/0.2 6.05E�04 (2.11) 3.83E�05 (2.09)
2/0.1 1.21E�04 (2.32) 7.97E�06 (2.26)

Fig. 6. Instantaneous spatial profiles of the normalized rate fCPU observed at the end of ‘‘blowoff’’ DES runs performed with xCFL ¼ 0:5
and different values of the PEP parameter, RPEP.
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8. Summary

As mentioned in Section 1, large-scale gas-dynamics simulations may struggle with a disparity of spatially
inhomogeneous time scales imposed by the governing physics and underlying mesh geometry. In particular,
modeling multi-scale physical phenomena with explicit time-stepping schemes forces the global simulation
to evolve with the smallest timestep allowed by the global CFL condition, despite the fact that large parts
of the system may not need to be updated as frequently. Multiple time-stepping schemes (including hierarchi-
cal time integration in SAMR) rely on selecting global synchronization time steps, which have to be a priori

subdivided in hierarchical groups of local time steps based on flow (stability/accuracy) conditions existing at
the beginning of each global time step. As local computations progress, these conditions may be violated. As a
result, an initially chosen time-integration sequence may become inaccurate or unstable before the simulation
reaches the end of the global synchronization step. Repairing such time-stepping hierarchies (by reducing
unstable timesteps) may not always be efficient (in terms of CPU time) or robust (accuracy/stability-wise),
especially when integrating highly nonlinear (e.g. reactive, turbulent) systems. In addition, time-stepping
methods, in general, suffer from their inability to automatically detect noninformative (‘‘idle’’) parts of the
simulation phase space, where they continue to waste CPU resources without producing meaningful changes
to the solution.

To address these issues, we presented a second-order-in-time DES algorithm for gas dynamics, which, by
tracking incremental changes to local flow variables, enables a physically intuitive approach to the time inte-
gration of nonlinear systems with heterogeneous time scales. The self-adaptive sequence of event-driven
updates in such systems ensures physical causality and local accuracy required, while preserving numerical
fluxes in a time-averaged sense. We also showed that the new preemptive event processing (DES–PEP)
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algorithm enables automatic synchronization of spatially distributed elements, which are characterized by
close frequencies of numerical updates. This allows CPU-efficient asynchronous integration without having
to pregroup such elements in timestep bins. Also, parallelization of DES–PEP codes (to be discussed else-
where) becomes a more straightforward task, compared to standard optimistic and conservative techniques
for DES systems [11].

It should be noted that the algorithm presented in this paper is especially well suited for inhomogeneous
flows with a broad range of dynamic time scales, as well as numerical systems discretized on adaptive unstruc-
tured meshes. For instance, multi-phase porous flows [12] and combustion models [19,24,30,36] are often char-
acterized by the presence of localized high-speed flows, fast diffusion and detailed chemistry reactions. For
such problems, the DES–PEP approach is expected to produce a significant impact by enabling high-resolu-
tion explicit simulations, which are currently considered to be prohibitive.

In some compressible gas-dynamics applications (e.g. [28,29]) fast acoustic or gravity waves may dominate
characteristic material flow velocities in large parts of the computational domain. Consequently, in its present
form, DES would still have to account for these fast waves by satisfying the stiffest local CFL conditions,
unless the forcing terms in the governing equations are artificially modified to speed up explicit computation
(e.g. see Ref. [36]). In the long run this difficulty may be overcome by allowing slower parts of reacting and flux
terms to be updated not as frequently as local (wave-driven) fluctuations. Moreover, it seems possible to envi-
sion a DES-based algorithm, which would make use of local averaging of fast time scales, similar to the global
method of averages introduced in Ref. [28]. In addition, previous results from multi-physics event-driven sim-
ulations [23] suggest that aside from increased efficiency, the DES machinery may produce more robust (sta-
ble) and accurate solutions than analogous time-stepping codes.

The DES algorithm presented in this paper is mainly targeted towards semi-discrete (OðDtÞ) numerical dis-
cretizations. For this type of schemes convergence of higher-order-in-time asynchronous integration can be
achieved by making a posteriori flux corrections. It is also possible to devise DES algorithms for second-
order-in-time unsplit discretizations of compressible Navier–Stokes equations (e.g. unsplit Riemann, Lax–
Wendroff, central schemes, etc.). As already mentioned in the Introduction, such algorithms could be naturally
built by assuming piecewise-linear flux trajectories at cell interfaces, which would in turn necessitate solving a
quadratic equation for each state’s Dt, given an appropriate threshold value, Df . On the other hand, for finite-
volume systems discretized via the ADER approach [8], higher temporal resolutions may be obtained even
with the forward Euler scheme. Finally, extending the DES algorithm to multiple dimensions is deemed to
be straightforward, as long as the underlying multi-dimensional spatial discretization scheme is adequate
for a time-evolution problem in question. Work on the parallelization and extension of DES–PEP to multiple
dimensions, nonuniform (structured and unstructured) meshes, higher-order spatial discretizations and MHD,
will be reported in our future publications.
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Appendix

This appendix contains the pseudocode for a number of functions used in the DES and TDS algorithms
illustrated in Tables 1 and 2 (Section 5), respectively. The prefix Event:: precedes function names and indicates
that these functions represent methods of the class Event, i.e., they operate on (have access to) data encapsu-
lated in an object of the class Event, eðiÞ � This. Table A1 presents update methods. Table A2 illustrates pro-
cessing and synchronization methods. Table A3 contains a method implementing the second-order correction
described by Eqs. (13)–(14). Finally, Table A4 formulates a scheduling procedure, which predicts event pro-
cess times based on local CFL condition (12). Below we assume that during each PEP loop flux synchroniza-
tion interfaces, SðiþkÞ=2 (cell faces, which act as information ‘‘gateways’’ between adjacent cells, i and k) are



Table A1
Pseudocode of three Event class methods: reconstruct( ) constructs the left and right interface solutions (for better accuracy one-sided
derivatives Di�1=2 in Eq. (10) are evaluated with solution states computed at the current clock time tclockÞ; dfdt( ) computes the local rate-of-
change; update( ) integrates the cell-centered solution u and the ‘‘flux capacitor’’ variable du

function Event::reconstruct( )
1: compute Di at t ¼ tclock // see Eq. (10)
2: for k ¼ iþ l; l ¼ �1:
3: if (SðiþkÞ=2 is synchronized):
4: reconstruct uðiþkÞ=2

i // see Eq. (9)
5: if (k is boundary): reconstruct uðiþkÞ=2

k
6: endif

7: endfor

endfunction

function Event::dfdt( )
1: for k ¼ iþ l; l ¼ �1:
2: if (SðiþkÞ=2 is synchronized and not flux-computed):
3: compute F ðiþkÞ=2 // see Eq. (7)
4: endif

5: endfor

6: compute Ri // see Eq. (6)
7: ti ¼ tclock // reset internal timer
endfunction

function Event::update( )
1: Dui ¼ Riðtclock � tiÞ // compute change since last update
2: ui ¼ ui þ Dui // increment solution
3: dui ¼ dui þ Dui // increment ‘‘flux capacitor’’
endfunction

Table A2
Pseudocode of two Event class methods: process( ) executes the top event in EventQueue; synchronize( ) initiates a self-adaptive
synchronization sequence, which enforces physical causality. States adjacent to physical boundaries are always synchronized with their
neighboring states regardless of their ‘‘flux capacitor’’ values (see line 12 in synchronize( ))

function Event::process( )
1: if (This is not in PEPStack): // not already synchronized
2: add This to PEPStack

3: This.update( )
4: endif

5: This.synchronize( ) // synchronize this state with neighbors
endfunction

function Event::synchronize( )
1: invalidate This // This= e(i)

2: if (This is not active): activate This

3: dui ¼ 0 // flush the flux capacitor for this state
4: for k ¼ iþ l; l ¼ �1:
5: if (SðiþkÞ=2 is synchronized):
6: continue // for-loop
7: else if (k is boundary):
8: apply boundary conditions for uk

9: else if (eðkÞ is not in PEPStack): // if eðkÞ is not already synchronized
10: add eðkÞ to PEPStack

11: e(k).update( )
12: if (kdukkP Dutg

k or k � 1 is boundary): e(k).synchronize( ) // preempt e(k)
13: endif

14: endfor

endfunction
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Table A3
Pseudocode of the Event class method, correct( )

function Event::correct( )
1: if (This is not active): return // This = e(i)

2: for k ¼ iþ l; l ¼ �1:
3: Syncok=SðiþkÞ=2 is synchronized and not flux-corrected
4: if (Syncok and eðkÞ is active):
5: compute DuðiþkÞ=2 // see Eq. (14)
6: ui ¼ ui � lDuðiþkÞ=2

7: if (This is valid): dui ¼ dui � lDuðiþkÞ=2

8: if (k is not boundary):
9: uk ¼ uk þ lDuðiþkÞ=2

10: if (eðkÞ is valid): duk ¼ duk þ lDuðiþkÞ=2

11: endif

12: endif

13: endfor

14: for k ¼ iþ l; l ¼ �1:
15: if (k is boundary): apply boundary conditions for uk

16: endfor

endfunction

This method implements the asynchronous second-order Euler correction (Eqs. (13)–(14)). Flux corrections are only allowed at cell
interfaces connecting solution states marked as ‘‘active’’.

Table A4
Pseudocode of the Event class method schedule()

function Event::schedule( )
1: compute j DuCFL

i j¼j Ri j xCFLDtCFL
i // see Eq. (12)

2: if (j DuCFL
i j< eÞ: {Dutr

i ¼ e ; Dttr
i ¼ 1} else:{Dutr

i ¼j DuCFL
i j; Dttr

i ¼ Dutr
i = j Ri j}

3: if (tclock ¼¼ 0Þ: Dti ¼ Dttr
i else: Dti ¼ tclock � tlast

i // compute Dti for PEP
4: tlast

i ¼ tclock

5: if (Dttr
i P tENDÞ: // this is problem-dependent condition

6: deactivate This

7: else:
8: if (This is not active): activate This

9: tproc
i ¼ tclock þ Dttr

i // estimate next process time
10: add This to EventQueue

11: endif

endfunction

This particular implementation uses local CFL condition (12) to compute the target solution increment Dutr
i (line 2). The small parameter e

is taken to be of the order of machine roundoff.
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logically flagged. Additional flags are also used to avoid making duplicate flux corrections (see Tables A1 and
A3). Note that in the time-stepping algorithm (Table 2) fluxes are automatically computed/corrected once per
face since they are evaluated in a sequential, face-centered order, as opposed to an arbitrary (physically dri-
ven), cell-centered order, characteristic of DES.
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